考前仿真卷

《高等数学(一)》

专科起点升本科

一、选择题(本大题共 12 小题,每小题 7 分,共 84 分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1. 设
$$\lim_{x\to 0} \frac{\sin mx}{x} = 3$$
,则 $m = ()$

- A. 1
- В. 3
- C. -1
- D. -3

2. 当
$$x \rightarrow 0$$
时, $1 - \cos x$ 是 $\sin^2 x$ 的()

- A. 等价无穷小量
- B. 同阶无穷小量
- C. 高阶无穷小量
- D. 低阶无穷小量

3. 设
$$\begin{cases} x = \sin t \\ y = \cos 2t \end{cases}, \quad 则 \frac{dy}{dx} = ()$$

- A. $-4\sin t$
- B. 4 sin *t*
- C. $-2\sin t$
- D. $-2\cos t$

4. 曲线
$$y = \frac{e^x}{e^x - 1}$$
 的水平渐近线为 ()

A.
$$y = 0$$

B.
$$y = 1$$

C.
$$y = 0$$
或 $y = 1$

D.
$$x = 0$$

5.
$$\forall y = xe^x$$
, $||dy||_{x=0} = ()$

- A. 0
- B. 2*dx*
- C. -dx
- D. dx

6.
$$\int (1+2x)^3 dx = ()$$

A.
$$\frac{1}{4}(1+2x)^4 + C$$

B.
$$\frac{1}{8}(1+2x)^4 + C$$

- C. $4(1+2x)^4 + C$
- D. $8(1+2x)^4 + C$
- 7. $\int_{-1}^{1} (x^3 + \cos x) dx = ()$
- A. 2 cos 1
- B. $-\sin 1$
- C. sin 1
- D. 2 sin 1

8.
$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = ()$$

- Α. π
- B. $-\frac{\pi}{2}$
- C. $\frac{\pi}{2}$
- D. $-\pi$

9. 若
$$z = e^{xy}$$
,则 $dz|_{(1,2)} = ()$

- A. $e^{xy}(ydx + xdy)$
- B. $3e^{2}$
- $C. 2e^2dx + e^2dy$
- D. 0

10. 已知
$$z = x + y + \sin(xy)$$
,则 $\frac{\partial^2 z}{\partial x \partial y} = ()$

- A. $\sin(xy)$
- B. $\sin(xy)(1+xy)$
- C. $\cos(xy) xy\sin(xy)$
- $D. xy \cos(xy)$
- 11. 函数 $f(x) = x^3 27x + 2$ 在 [0,1] 上的最大值为 ()
- A. 56
- B. 2
- C. 28
- D. 0

12. 通解为 $y = (C_1 + C_2 x)e^{-3x}$ 的二阶常系数齐次线性微分方程是()

A.
$$y'' - 6y' + 9y = 0$$

B.
$$y'' + 6y' + 9y = 0$$

C.
$$y'' + 6y' + 9y = 1$$

D.
$$v'' + 6v' = 0$$

二、填空题(本大题共3小题,每小题7分,共21分)

13. 曲线
$$y = \arctan x$$
 在 $\left(1, \frac{\pi}{4}\right)$ 处的切线斜率是_____.

14. 曲线 $y = 1 + x^3$ 的拐点是_____.

15.
$$\int \frac{4x+1}{2x^2+x+1} dx = \underline{\hspace{1cm}}$$

三、解答题(本大题共3小题,每小题15分,共45分.解答应写出推理、演算步骤)

16. 设函数
$$f(x) = \begin{cases} 3e^{4x} & , & x < 0 \\ 2x + \frac{a}{2}, & x \ge 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a .

17. 计算二重积分
$$\iint_{D} (\sqrt{x^2 + y^2} - xy) dx dy$$
, 其中 $D: x^2 + y^2 \le 1$.

18. 将
$$f(x) = \frac{1}{2+x}$$
 展成关于 x 的幂级数.

参考答案及解析

一、选择题

1. 【答案】B

【解析】
$$\lim_{x\to 0} \frac{\sin mx}{x} = \lim_{x\to 0} \frac{mx}{x} = m = 3.$$

2. 【答案】B

【解析】因为
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x} = \lim_{x\to 0} \frac{\frac{1}{2}x^2}{x^2} = \frac{1}{2}$$
,所以 $1-\cos x$ 为 $\sin^2 x$ 的同阶无穷小量.

3. 【答案】A

【解析】由参数方程求导公式,
$$\frac{dy}{dx} = \frac{(\cos 2t)'}{(\sin t)'} = \frac{-2\sin 2t}{\cos t} = \frac{-4\sin t\cos t}{\cos t} = -4\sin t.$$

4. 【答案】C

【解析】因为
$$\lim_{x\to +\infty} \frac{e^x}{e^x-1} = \lim_{x\to +\infty} \frac{e^x}{e^x} = 1$$
, $\lim_{x\to -\infty} \frac{e^x}{e^x-1} = \frac{0}{-1} = 0$. 所以该曲线的水平渐近线为

$$y = 0$$
或 $y = 1$.

5. 【答案】D

【解析】因为
$$y' = (xe^x)' = (x+1)e^x$$
,所以 $dy|_{x=0} = (x+1)e^x|_{x=0} dx = dx$.

6. 【答案】B

【解析】
$$\int (1+2x)^3 dx = \frac{1}{2} \int (1+2x)^3 d(2x+1) = \frac{1}{8} (1+2x)^4 + C.$$

7. 【答案】D

【解析】
$$\int_{-1}^{1} (x^3 + \cos x) dx = \int_{-1}^{1} x^3 dx + \int_{-1}^{1} \cos x dx = 0 + \sin x \Big|_{-1}^{1} = 2 \sin 1.$$

8. 【答案】A

【解析】
$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \arctan x \Big|_{-\infty}^{+\infty} = \lim_{x \to +\infty} \arctan x - \lim_{x \to -\infty} \arctan x = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi.$$

9. 【答案】C

【解析】因为
$$dz = (e^{xy})'_x dx + (e^{xy})'_y dy = ye^{xy} dx + xe^{xy} dy$$
,故 $dz \Big|_{(1,2)} = 2e^2 dx + e^2 dy$.

10. 【答案】C

【解析】
$$\frac{\partial z}{\partial x} = 1 + y \cos(xy)$$
, $\frac{\partial^2 z}{\partial x \partial y} = \cos(xy) - xy \sin(xy)$.

11. 【答案】B

【解析】令
$$f'(x) = 3x^2 - 27 = 0$$
,得 $x = \pm 3$.又 $f(0) = 2$, $f(1) = -24$.所以该函数在 $[0,1]$ 上的最大值为 $f(0) = 2$.

12. 【答案】B

【解析】由该二阶常系数齐次线性微分方程通解形式可知,其特征根为 $r_1=r_2=-3$.故特征

方程为
$$(r+3)^2 = r^2 + 6r + 9 = 0$$
, 所以该方程为 $y'' + 6y' + 9y = 0$.

二、填空题

13. 【答案】
$$\frac{1}{2}$$

【解析】
$$k_{ty} = (\arctan x)'|_{x=1} = \frac{1}{1+x^2}|_{x=1} = \frac{1}{2}.$$

14. 【答案】(0,1)

【解析】
$$y' = 3x^2$$
, $y'' = 6x$. 令 $y'' = 0$, 得 $x = 0$. 因为 $x < 0$ 时, $y'' < 0$; $x > 0$ 时, $y'' > 0$.

又x = 0时, y = 1.因此拐点为(0,1).

15. 【答案】
$$ln(2x^2 + x + 1) + C$$

【解析】
$$\int \frac{4x+1}{2x^2+x+1} dx = \int \frac{1}{2x^2+x+1} d(2x^2+x+1) = \ln |2x^2+x+1| + C$$
. 因为

$$2x^2 + x + 1 = 2\left(x + \frac{1}{4}\right)^2 + \frac{7}{8} > 0$$
, 所以 $\int \frac{4x + 1}{2x^2 + x + 1} dx = \ln(2x^2 + x + 1) + C$.

三、解答题

16. 【答案】由题意知,
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$$
.

即
$$\lim_{x\to 0^+} \left(2x + \frac{a}{2}\right) = \lim_{x\to 0^-} 3e^{4x}$$
, 得 $\frac{a}{2} = 3$,

所以a=6.

【解析】

17. 【答案】
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
 关于 y 轴对称,

函数
$$xy$$
 关于 x 为奇函数, 则 $\iint_{\Omega} xydxdy = 0$.

所以
$$\iint_D (\sqrt{x^2 + y^2} - xy) dx dy = \iint_D \sqrt{x^2 + y^2} dx dy$$

$$= \iint_D r^2 dr d\theta = \int_0^{2\pi} d\theta \int_0^1 r^2 dr$$

$$= 2\pi \cdot \frac{1}{3} r^3 \Big|_0^1 = \frac{2\pi}{3}.$$

【解析】

18. 【答案】因为
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1,1).$$

所以
$$f(x) = \frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{1}{1 + \frac{x}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{2}\right)^n$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^{n+1}} x^n, x \in (-1,1).$$

【解析】